Word2vec
跳到导航
跳到搜索
Word2Vec 是 Google 在 2013 年推出的一个 NLP 工具,能够将单词转化为向量来表示,可以定量的去度量词与词之间的关系,挖掘词与词之间的联系。
- 连续词袋(Continuous Bag of Words, CBOW),根据周围的单词预测中心词
- Skip-Gram,根据中心词预测周围的单词
Word2Vec 的应用广泛而多样。最流行的应用之一是文本分类,它用于根据单词的含义对文本进行分类。它还用于情感分析,它可以通过分析所用单词的含义来确定一段文本的情感。
Word2Vec 的另一个重要应用是机器翻译,它可以通过识别单词的正确含义来帮助提高翻译的准确性。它还用于推荐系统,它可以根据用户查询的含义推荐产品或服务。
INST
pip3 install gensim Collecting gensim Downloading gensim-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.6 MB) |████████████████████████████████| 26.6 MB 7.7 MB/s Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.8/dist-packages (from gensim) (1.23.4) Collecting scipy>=1.7.0 Downloading scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB) |████████████████████████████████| 34.5 MB 8.0 MB/s Collecting smart-open>=1.8.1 Downloading smart_open-7.0.4-py3-none-any.whl (61 kB) |████████████████████████████████| 61 kB 1.2 MB/s Collecting wrapt Downloading wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (83 kB) |████████████████████████████████| 83 kB 1.8 MB/s Installing collected packages: scipy, wrapt, smart-open, gensim Successfully installed gensim-4.3.2 scipy-1.10.1 smart-open-7.0.4 wrapt-1.16.0
demo
import gensim.downloader as api from gensim.models import Word2Vec ## train a CBOW model from text8 # dataset = api.load("text8") # model_cbow = Word2Vec(sentences=dataset, sg=0, window=5, vector_size=100, min_count=5, workers=4) ## save model # model_cbow.save('text8_model_cbow.model') # retrain # model_cbow.train([["hello"],["world"]], total_examples=1, epochs=1) model_cbow = Word2Vec.load('text8_model_cbow.model') #### wv.save 以 kededVectors 实例形式保存词向量文件,因为无完整的模型状态,无法再训练 ## 使用 KeyedVectors.load 加载词向量文件 ## model_cbow.wv.save("text8_model_cbow_base.model") # Get the word vectors for the specified words word_vectors = [model_cbow.wv[word] for word in target_words] # pip3 install matplotlib scikit-learn import matplotlib.pyplot as plt from sklearn.decomposition import PCA # Reduce dimensionality using PCA for visualization pca = PCA(n_components=2) word_vectors_pca = pca.fit_transform(word_vectors) # Plot word vectors and annotations plt.figure(figsize=(10, 8)) for i, word in enumerate(target_words): plt.annotate(word, (word_vectors_pca[i, 0], word_vectors_pca[i, 1]), fontsize=10) plt.arrow(0, 0, word_vectors_pca[i, 0], word_vectors_pca[i, 1], head_width=0.1, head_length=0.1, fc='blue', ec='blue') plt.title('Word Vectors and Annotations') plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.grid() plt.axhline(y=0, color='black', linewidth=0.5) plt.axvline(x=0, color='black', linewidth=0.5) plt.show()