滑动窗口方法

来自牛奶河Wiki
阿奔讨论 | 贡献2024年12月5日 (四) 10:41的版本 →‎说明
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳到导航 跳到搜索

滑动窗口方法(Sliding Window Technique)是指在数据结构(通常是数组或字符串)中移动固定或可变大小的窗口,以基于连续元素子集有效地解决问题的技术。

Abstract

  1. 使用兩個指針(left, right)表示一個窗口,left 指針表示窗口的起始位置,right 指針表示窗口的結束位置。
  2. 隨著右指針逐步移動,擴大窗口,當遇到重複字符時,按顺序縮小窗口,直到窗口内不再有重复字符。

说明

  1. 目前窗口中含有字符 X。当 right 移动遇到下一个字符 X 时,left 滑动到第一个 X 的下一个位置,使当前窗口中不再有重复字符;
  2. left 滑动前窗口中的字符串与已经保存的最长子串对比/替换;
#1
left right
O O X O O O X O

Max=OOXOOO, window=OOXOOO, MaxLength=6

#2
left right
O O X O O O X O

Max=OOXOOO, window=OOOX, MaxLength=6

以上图例中,O 代表任何字符,在上文中,显然除了最后一个 O,其他所有的 O 都不重复。

Time Complexity

一般来说这些问题可以使用嵌套循环在 O(N2) 时间复杂度中解决,使用滑动窗口可以在 O(N) 时间复杂度中解决这些问题。

应用

  • 最长无重复子串
  • 最小覆盖子串(所有给定字符都至少出现一次)
  • 子串和问题

Leetcode - 003

<3. Longest Substring Without Repeating Characters
Medium

Given a string s, find the length of the longest substring without repeating characters.

Example 1:
Input: s = "abcabcbb"
Output: 3
Explanation: The answer is "abc", with the length of 3.

Example 2:
Input: s = "bbbbb"
Output: 1
Explanation: The answer is "b", with the length of 1.

Example 3:
Input: s = "pwwkew"
Output: 3<
Explanation: The answer is "wke", with the length of 3.
Notice that the answer must be a substring, "pwke" is a subsequence and not a substring.

Constraints:
    0 <= s.length <= 5 * 10^4
    s consists of English letters, digits, symbols and spaces.

Accepted 6.6M, Submissions 18.5M, Acceptance Rate 35.8%
public static int lengthOfLongestSubstring(String s) {
    int[] charIndex = new int[128];
    for (int i = 0; i < 128; i++) {
        charIndex[i] = -1;
    }

    int maxLength = 0;
    int left = 0;
    for (int right = 0; right < s.length(); right++) {
        char currentChar = s.charAt(right);
        if (charIndex[currentChar] >= left) {
            left = charIndex[currentChar] + 1;
        }

        charIndex[currentChar] = right;
        maxLength = Math.max(maxLength, right - left + 1);
    }

    return maxLength;
}

See Also

  1. Sliding Window Technique