Pandas json:修订间差异

来自牛奶河Wiki
跳到导航 跳到搜索
(创建页面,内容为“===pandas json=== 通常情况下,我们使用的都是 pandas 中的 to_json() 函数,可以通过设置 orient 参数来转换成为我们想要的 json 格式,orient 函数有以下几个参数: *Series可选参数为:"index"(默认), "split", "records" *DataFrame可选参数:"columns"(默认),split","records", "index","values" ---- =====dataframe <--> json===== ====data==== data: area_proc.csv {| class="wikitable" !area_id!!area_na…”)
 
无编辑摘要
 
(未显示同一用户的1个中间版本)
第1行: 第1行:
===pandas json===
通常情况下,我们使用的都是 pandas 中的 to_json() 函数,可以通过设置 orient 参数来转换成为我们想要的 json 格式,orient 函数有以下几个参数:
通常情况下,我们使用的都是 pandas 中的 to_json() 函数,可以通过设置 orient 参数来转换成为我们想要的 json 格式,orient 函数有以下几个参数:
*Series可选参数为:"index"(默认), "split", "records"
*Series可选参数为:"index"(默认), "split", "records"
第5行: 第4行:
----
----


=====dataframe <--> json=====
=== data -> dataframe ===


====data====
==== data ====
data: area_proc.csv
area_proc.csv
{| class="wikitable"
{| class="wikitable"
!area_id!!area_name!!prod_type!!prod_name!!num!!unit!!total
!area_id!!area_name!!prod_type!!prod_name!!num!!unit!!total
第21行: 第20行:
|}
|}


====dataframe====
==== dataframe ====
  ...
  ...
  df1 = pd.read_csv(u'area_proc.csv')
  df1 = pd.read_csv(u'area_proc.csv')
第30行: 第29行:
  3      11      SHA        P2      Pear  15  2.5  37.5
  3      11      SHA        P2      Pear  15  2.5  37.5


=====dataframe -> json=====
=== dataframe -> json ===
dataframe.to_json(orient="?", force_ascii=False)
dataframe.to_json(orient="?", force_ascii=False)


第67行: 第66行:
----
----


=====json -> dataframe=====
=== json -> dataframe ===
[[分类:Develop]]
[[分类:Develop]]
[[分类:Python]]
[[分类:Python]]
[[分类:Pandas]]
[[分类:Pandas]]

2022年12月29日 (四) 15:36的最新版本

通常情况下,我们使用的都是 pandas 中的 to_json() 函数,可以通过设置 orient 参数来转换成为我们想要的 json 格式,orient 函数有以下几个参数:

  • Series可选参数为:"index"(默认), "split", "records"
  • DataFrame可选参数:"columns"(默认),split","records", "index","values"

data -> dataframe

data

area_proc.csv

area_id area_name prod_type prod_name num unit total
10 PEK P1 Apple 12 5.2 62.4
10 PEK P2 Pear 20 3.3 66
11 SHA P1 Apple 8 4.5 36
11 SHA P2 Pear 15 2.5 37.5

dataframe

...
df1 = pd.read_csv(u'area_proc.csv')
   area_id area_name prod_type prod_name  num  unit  total
0       10       PEK        P1     Apple   12   5.2   62.4
1       10       PEK        P2      Pear   20   3.3   66.0
2       11       SHA        P1     Apple    8   4.5   36.0
3       11       SHA        P2      Pear   15   2.5   37.5

dataframe -> json

dataframe.to_json(orient="?", force_ascii=False)

?--> columns, split, records, index, values

dataframe -> json : columns

df1.to_json(orient="columns",force_ascii=False)

'{"area_id":{"0":10,"1":10,"2":11,"3":11},"area_name":{"0":"PEK","1":"PEK","2":"SHA","3":"SHA"},"prod_type":{"0":"P1","1":"P2","2":"P1","3":"P2"},"prod_name":{"0":"Apple","1":"Pear","2":"Apple","3":"Pear"},"num":{"0":12,"1":20,"2":8,"3":15},"unit":{"0":5.2,"1":3.3,"2":4.5,"3":2.5},"total":{"0":62.4,"1":66.0,"2":36.0,"3":37.5}}'


dataframe -> json : split =

df1.to_json(orient="split",force_ascii=False)

'{"columns":["area_id","area_name","prod_type","prod_name","num","unit","total"],"index":[0,1,2,3],"data":[[10,"PEK","P1","Apple",12,5.2,62.4],[10,"PEK","P2","Pear",20,3.3,66.0],[11,"SHA","P1","Apple",8,4.5,36.0],[11,"SHA","P2","Pear",15,2.5,37.5]]}'


dataframe -> json : records =

df1.to_json(orient="records",force_ascii=False)

'[{"area_id":10,"area_name":"PEK","prod_type":"P1","prod_name":"Apple","num":12,"unit":5.2,"total":62.4},{"area_id":10,"area_name":"PEK","prod_type":"P2","prod_name":"Pear","num":20,"unit":3.3,"total":66.0},{"area_id":11,"area_name":"SHA","prod_type":"P1","prod_name":"Apple","num":8,"unit":4.5,"total":36.0},{"area_id":11,"area_name":"SHA","prod_type":"P2","prod_name":"Pear","num":15,"unit":2.5,"total":37.5}]'


dataframe -> json : index =

df1.to_json(orient="index",force_ascii=False)

'{"0":{"area_id":10,"area_name":"PEK","prod_type":"P1","prod_name":"Apple","num":12,"unit":5.2,"total":62.4},"1":{"area_id":10,"area_name":"PEK","prod_type":"P2","prod_name":"Pear","num":20,"unit":3.3,"total":66.0},"2":{"area_id":11,"area_name":"SHA","prod_type":"P1","prod_name":"Apple","num":8,"unit":4.5,"total":36.0},"3":{"area_id":11,"area_name":"SHA","prod_type":"P2","prod_name":"Pear","num":15,"unit":2.5,"total":37.5}}'


dataframe -> json : values =

df1.to_json(orient="values",force_ascii=False)

'[[10,"PEK","P1","Apple",12,5.2,62.4],[10,"PEK","P2","Pear",20,3.3,66.0],[11,"SHA","P1","Apple",8,4.5,36.0],[11,"SHA","P2","Pear",15,2.5,37.5]]'



json -> dataframe