Google Colab:修订间差异
跳到导航
跳到搜索
小无编辑摘要 |
|||
第25行: | 第25行: | ||
=== Colab Pro === | === Colab Pro === | ||
* £9.72/月 | * £9.72/月 OR $9.99/月,可能分到Tesla V100,即便是Tesla P100,一个月 $9.99 也值 | ||
* 每月 100 个计算单元 | * 每月 100 个计算单元 | ||
* Colab Pro 用户可以开 terminal | |||
* 在完成工作后关闭 Colab 标签页,并在没有实际工作需求时避免选用 GPU 或额外的内存 | * 在完成工作后关闭 Colab 标签页,并在没有实际工作需求时避免选用 GPU 或额外的内存 | ||
* 可以连接 Google Drive,Google Drive 里可以先存数据集,再解压到 Colab 的 Content 下 | |||
* 最长时间是 24 小时断 1 次 | |||
* 如果网络不好,可能会频繁断开 | |||
* 数据集比较大时候(>10GB),下载到 Colab 的 Content 里可能比较慢,从 Google Drive 解压2.2 GB 的图片文件到 colab 需要不到 30 秒时间 | |||
* 分配的RAM可能不足,显示的是 25.5GB,可能实际远低于这个内存 | |||
===地址=== | ===地址=== |
2023年4月2日 (日) 00:20的版本
什么是 Colab?
Colab 是一种托管式 Jupyter 笔记本服务。借助 Colaboratory(简称 Colab),您可在浏览器中编写和执行 Python 代码,并且:
- 无需任何配置
- 免费使用 GPU
- 轻松共享
无论您是一名学生、数据科学家还是 AI 研究员,Colab 都能够帮助您更轻松地完成工作。
- 在免费版 Colab 中,笔记本最长可以运行 12 小时
- Colab 的资源供应没有保证,也不会无限量供应,用量限额有时会变化
- Colab 中的资源将优先提供给交互式用例
- 我们禁止各种涉及批量计算、会对他人造成负面影响或试图规避我们政策的操作,如:
- 文件托管、媒体传送或提供其他与 Colab 的交互式计算无关的网络服务
- 下载种子文件或进行点对点文件共享
- 使用远程桌面或 SSH
- 连接到远程代理
- 加密货币挖矿
- 运行拒绝服务攻击
- 破解密码
- 利用多个帐号绕过访问权限或资源使用情况限制
- 创建深度伪造内容
Colab Pro
- £9.72/月 OR $9.99/月,可能分到Tesla V100,即便是Tesla P100,一个月 $9.99 也值
- 每月 100 个计算单元
- Colab Pro 用户可以开 terminal
- 在完成工作后关闭 Colab 标签页,并在没有实际工作需求时避免选用 GPU 或额外的内存
- 可以连接 Google Drive,Google Drive 里可以先存数据集,再解压到 Colab 的 Content 下
- 最长时间是 24 小时断 1 次
- 如果网络不好,可能会频繁断开
- 数据集比较大时候(>10GB),下载到 Colab 的 Content 里可能比较慢,从 Google Drive 解压2.2 GB 的图片文件到 colab 需要不到 30 秒时间
- 分配的RAM可能不足,显示的是 25.5GB,可能实际远低于这个内存
地址
https://colab.research.google.com
- 先点击左上角的 新建笔记本,重命名笔记本
- 代码执行程序 -> 更改运行时类型 -> 硬件加速器 -> GPU/TPU
Demo
GPU
!nvidia-smi
Sat Apr 1 15:15:25 2023 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 | | N/A 49C P8 10W / 70W | 0MiB / 15360MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
import tensorflow as tf print("Tensorflow version " + tf.__version__) tf.config.experimental.list_physical_devices(device_type=None)
Tensorflow version 2.12.0 [PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TPU
import tensorflow as tf print("Tensorflow version " + tf.__version__) try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # TPU detection print('Running on TPU ', tpu.cluster_spec().as_dict()['worker']) except ValueError: raise BaseException('ERROR: Not connected to a TPU runtime; please see the previous cell in this notebook for instructions!') tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) tpu_strategy = tf.distribute.TPUStrategy(tpu)
Tensorflow version 2.12.0 Running on TPU ['10.46.223.138:8470'] WARNING:tensorflow:TPU system grpc://10.46.223.138:8470 has already been initialized. Reinitializing the TPU can cause previously created variables on TPU to be lost.