查看“Milvus 安装”的源代码
←
Milvus 安装
跳到导航
跳到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
Milvus is an open-source vector database that brings search to GenAI applications. Milvus was selected as the vector database of choice (over Chroma and Pinecone). Milvus is an open-source vector database designed specifically for similarity search on massive datasets of high-dimensional vectors. Milvus supports Python, Java, C++. === Milvus 2 === [https://milvus.io/docs/install_standalone-docker.md HELP: Run Milvus in Docker] * Preparations # Milvus 2.0.0 # Python 3 (3.7.1 or later) # PyMilvus 2.0.0 ==== Docker Inst ==== * 拉取并保存镜像 docker pull milvusdb/milvus:v2.4.5 * 下载脚本文件 wget https://raw.githubusercontent.com/milvus-io/milvus/master/scripts/standalone_embed.sh bash standalone_embed.sh start | stop | delete * 路径 在 standalone_embed.sh 目录下创建 volumes 目录,存放数据文件。 <small><nowiki># docker ps 0cc9050d3dc4 milvusdb/milvus:v2.4.5 "/tini -- milvus run…" 4 minutes ago Up 4 minutes (healthy) 0.0.0.0:2379->2379/tcp, :::2379->2379/tcp, 0.0.0.0:9091->9091/tcp, :::9091->9091/tcp, 0.0.0.0:19530->19530/tcp, :::19530->19530/tcp milvus-standalone # docker logs 0cc9050d3dc4 [2024/08/15 07:48:30.255 +00:00] [INFO] [distance/calc_distance_amd64.go:14] ["Hook avx for go simd distance computation"] 2024/08/15 07:48:30 maxprocs: Leaving GOMAXPROCS=6: CPU quota undefined __ _________ _ ____ ______ / |/ / _/ /| | / / / / / __/ / /|_/ // // /_| |/ / /_/ /\ \ /_/ /_/___/____/___/\____/___/ Welcome to use Milvus! Version: v2.4.5 Built: Wed Jun 19 02:47:56 UTC 2024 GitCommit: 60695bdb GoVersion: go version go1.20.7 linux/amd64 TotalMem: 12537851904 UsedMem: 26251264 open pid file: /run/milvus/standalone.pid lock pid file: /run/milvus/standalone.pid</nowiki></small> ==== V2 Sample ==== [https://milvus.io/docs/v2.0.x/example_code.md Run Milvus using Python] === Milvus 1 === ==== Docker Inst ==== docker pull milvusdb/milvus:cpu-latest # 设置配置文件和工作目录 /u01/milvus/conf : conf # [https://github.com/milvus-io/milvus/blob/v0.10.1/core/conf/demo/server_config.yaml server_config.yaml] : db # 索引与向量存储 : logs # 日志 : wal # 预写式日志 docker run -td --name mymilvus -e "TZ=Asia/Shanghai" -p 19530:19530 -p 19121:19121 \ -v /u01/milvus/db:/var/lib/milvus/db \ -v /u01/milvus/wal:/var/lib/milvus/wal \ -v /u01/milvus/logs:/var/lib/milvus/logs \ -v /u01/milvus/conf:/var/lib/milvus/conf \ milvusdb/milvus:cpu-latest <small><small># docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES f8e350986ef4 milvusdb/milvus:cpu-latest "/tini -- /var/lib/m…" 4 seconds ago Up 3 seconds 0.0.0.0:19121->19121/tcp, :::19121->19121/tcp, 0.0.0.0:19530->19530/tcp, :::19530->19530/tcp milvusdev 322f00c39f82 registry "/entrypoint.sh /etc…" 2 weeks ago Up 13 days 0.0.0.0:8000->5000/tcp, :::8000->5000/ tcp uhry # docker logs f8e350986ef4 __ _________ _ ____ ______ / |/ / _/ /| | / / / / / __/ / /|_/ // // /_| |/ / /_/ /\ \ /_/ /_/___/____/___/\____/___/ Welcome to use Milvus! Milvus Release version: v1.1.1, built at 2021-06-15 14:51.05, with OpenBLAS library. You are using Milvus CPU edition Last commit id: 330cc61bede475c4a7a71841d54e633586cea829 Loading configuration from: /var/lib/milvus/conf/server_config.yaml NOTICE: You are using SQLite as the meta data management. We recommend change it to MySQL. Supported CPU instruction sets: avx2, sse4_2 FAISS hook AVX2 Milvus server started successfully!</small></small> ==== V1 Sample ==== milvus 版本 1.x 与 2.0 不兼容,pymilvus 也如此,且低版本的 pymilvus 不可安装在 python 高版本上,如 11。下面使用 pymilvus 1.1.0,安装在 python3.6 上。 <small><nowiki># -*- coding: utf-8 -*- import numpy as np from milvus import Milvus, MetricType HOST='192.168.0.242' PORT=19530 milvus = Milvus(host=HOST, port=PORT) # create table num_vec = 5000 vec_dim = 768 collection_name = "demo1" collection_param = { 'collection_name': collection_name, 'dimension': vec_dim, 'index_file_size': 32, 'metric_type': MetricType.IP } milvus.create_collection(collection_param) # Generate random data vectors_array = np.random.rand(num_vec, vec_dim) # Insert DB status, ids = milvus.insert(collection_name=collection_name, records=vectors_array) # 返回状态和这一组向量的ID milvus.flush([collection_name]) print(milvus.get_collection_stats(collection_name)) # QUERY query_vec_array = np.random.rand(1, vec_dim) status, results = milvus.search(collection_name=collection_name, query_records=query_vec_array, top_k=5) print(status) print(results) # Drop Table # status = milvus.drop_collection(collection_name) milvus.close()</nowiki></small> [[分类:Develop]] [[分类:DB]] [[分类:OtherDB]]
返回
Milvus 安装
。
导航菜单
个人工具
登录
命名空间
页面
讨论
大陆简体
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
目录
文章分类
侧边栏
帮助
工具
链入页面
相关更改
特殊页面
页面信息